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1. Introduction

The use of quantum systems for information processing was
first introduced by Benioff [1]. In 1985 Deutsch described quantum
computers which exploit the superposition of multi particle states,
thereby achieving massive parallelism [2]. Researchers have also
studied the possibility of solving certain types of problems more
efficiently than can be done on conventional computers [3–5].
These theoretical possibilities have generated significant interest
for experimental realization of quantum computers [6,7]. Several
techniques are being exploited for quantum computing and quan-
tum information processing, including nuclear magnetic resonance
(NMR) [8,9].

NMR has played a leading role for the practical demonstration
of quantum gates and algorithms [8–14]. Most of the NMR
quantum information processing (QIP) experiments have utilized
spin-1/2 systems having indirect spin–spin couplings (scalar J cou-
plings), known as weakly J coupled systems. In such systems, sin-
gle qubit gates are obtained by selectively manipulating the qubits
by applying qubit (spin) selective pulses, and multi-qubit gates are
obtained by spin–echo methods [10–14]. Price et al. have given a
systematic procedure for implementing multi-qubit gates [15–
17]. It is interesting to note that, a new class of algorithms, known
as adiabatic algorithms have also been proposed and successfully
implemented in NMR [18–20]. Such algorithms start from a
suitable initial state and by evolution under slowly time varying
Inc.
Hamiltonian, reach the desired output state. Recently NMR QIP
has been demonstrated in quadrupolar and dipolar coupled sys-
tems, obtained by orienting the molecules in liquid crystal media
[21,22]. In case of homo nuclear dipolar coupled systems, spins
are often strongly coupled and hence cannot be addressed individ-
ually [23]. However the 2n eigen states of an n-coupled system, are
collectively treated as an n-qubit system [21,23,37]. Similarly for
quadrupolar systems (spin > 1/2), individual spins are treated as
a multi-qubit system [22,24–35]. Resolved resonance lines provide
access to the full Hilbert space of 2n dimension [22,24].

Quadrupolar interaction arises for nuclei with spin > 1/2, result-
ing from the electrostatic interaction between nucleus and electric
charge distributions [39]. In liquids the quadrupolar interaction
which is anisotropic (orientation-dependent), is averaged to zero,
due to rapid isotropic reorientations of the molecules and in rigid
solids one obtains broad lines or powder pattern [39]. In molecules
partially oriented in anisotropic media, like liquid crystals, mole-
cules attain partial orientational order but no translational order,
such that intra molecular anisotropic interactions survive, but are
scaled down by the order parameter of the liquid crystal, yielding
finite number of sharp NMR resonances [40]. In the presence of
strong magnetic field, Zeeman interaction can be assumed to be
much stronger than quadrupolar interaction, as a consequence
quadrupolar Hamiltonian can be truncated by Zeeman Hamilto-
nian [39,40]. The total Hamiltonian consists of Zeeman term
Hz ¼ xoIz and a quadrupolar coupling term HQ ð¼ H1

Q þ H2
Q þ � � �Þ,

where xo ¼ �cBo is the resonance frequency and Hi
Q is the ith order

quadrupolar Hamiltonian which is inversely proportional to
ði� 1Þth power of xo. Under high magnetic fields and reduced
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Fig. 1. (A) Schematic energy level diagram of a spin-7/2 nucleus, spin states
j 7=2;7=2i � � � j 7=2;�7=2i are labeled as eight basis states of a three qubit system,
the dark rectangles represent the equilibrium populations, and the single quantum
transitions are labeled as a, b, . . ., g. (B) Equilibrium spectrum of oriented 133Cs
nucleus (spin-7/2), obtained by a non-selective ðp=2Þy pulse, at a resonance frequ-
ency of 65.59 MHz on a Bruker AV-500 spectrometer at a temperature 307 K. The
distance between successive transitions is equal to the effective quadrupolar cou-
pling ðKÞ. The line widths of transitions a, b, . . ., g are observed to be in the ratio
3.2:2.3:1.5:1.0:1.5:2.2:3.1 and the integrated experimental intensities are in the
ratio 7.2:12.1:15.1:16:15.1:12.0:7.0 (theoretically expected 7:12:15:16:15:12:7).
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quadrupolar coupling (by nearly three orders of magnitude) due to
reduced order parameter in a liquid crystal medium, only H1

Q

which is independent of xo, contributes to HQ :

H ¼ Hz þ HQ ¼ Hz þ H1
Q ¼ xoIz þ AQ ð3I2

z � I2Þ;

AQ ¼
2pe2qQ
½4Ið2I � 1Þ�

1
2
ð3 cos2ðaÞ � 1Þ þ g

2
cosð2aÞ sin2ðbÞ

� �� �
;

ð1Þ

where eq and eQ, respectively represent electric field gradient and
nuclear electric quadrupole moment, AQ is the time averaged or
effective quadrupolar coupling constant, a and b are determined
by the orientation of the priciple axis frame (PAF) of the molecule
with respect to the laboratory frame z-axis (Bo field direction)
[39]. g denotes the anisotropy parameter and is assumed to be zero
for axially symmetric molecules [39]. Thus, under strong magnetic
field, the total Hamiltonian of a quadrupolar nucleus partially ori-
ented in liquid crystal matrix, having axial symmetric electric field
gradient tensor, can be approximated as

H ¼ xoIz þ
2pe2qQ
½4Ið2I � 1Þ� Sð3I2

z � I2Þ ¼ xoIz þ 2pKð3I2
z � I2Þ; ð2Þ

where S ¼ hð3 cos2ðaÞ � 1Þ=2i is the order parameter at the site of
the nucleus. If the order parameter S is small, the effective quadru-
polar coupling K can be of the order of a few kHz in spite of e2qQ
being of the order of several MHz. Thus, it is possible to observe
the satellite transitions due to first order quadrupolar coupling. A
quadrupolar nucleus of spin I, having first order quadrupolar cou-
pling, gives rise to 2I equi-spaced transitions [39,40]. If
ð2I þ 1Þ ¼ 2n, such a system can be treated as an n-qubit system
[22,24]. The advantage of such systems and the dipolar coupled sys-
tems, over the J-coupled systems, is that the coupling values are one
to two orders of magnitude larger, allowing shorter gate times or
the use of shorter transition selective pulses [22–35]. It may be
noted that, in quadrupolar and strongly dipolar coupled systems,
implementation of single qubit gates, is not straight forward as in
J-coupled systems, since the qubits are not individually addressed.
However, in such systems single qubit gates are implemented by
applying amplitude and phase modulated multi-frequency pulses
[25], or by using strongly modulated pulses (SMPs) which are very
robust and takes only few tens of microseconds [26,36–38]. Infact
SMPs can extend the use of quadrupolar and dipolar coupled sys-
tems for implementing various quantum computing protocols
[26,37,38]. So far quadrupolar systems have been used for, quantum
simulation, preparation of pseudo pure states, implementation of
quantum gates and search algorithms [25–34]. Recently Das et al.
have implemented Cleve version of 2-qubit DJ algorithm on a
spin-7/2 nucleus [35]. In all these cases the controlled gates are
implemented by inverting populations between various levels, by
using transition selective p pulses. Recently it has been demon-
strated that non-adiabatic geometric phases can be used for imple-
menting quantum gates [49,50]. Here we use non-adiabatic
geometric phases to implement controlled phase shift gates and
Collins version of DJ algorithm on a 3-qubit system obtained by
eight eigen states of a spin-7/2 quadrupolar nucleus oriented in a
liquid crystal medium.

A 50–50 mixture of cesium-pentadecafluoro-octanate and D2O
forms a lyotropic liquid crystal at room temperature [27]. The
schematic energy level diagram of oriented spin-7/2 nucleus is
shown in Fig. 1A. The eight energy levels are labeled as the basis
states of a three qubit system. In the high field approximation,
effective quadrupolar coupling ðKÞ can be considered as a small
perturbation to Zeeman field. Thus for population purposes the
equilibrium density matrix can be considered to be proportional
to Hz (Fig. 1A). Partially oriented 133cesium nucleus (I = 7/2) gives
rise to a well resolved seven transitions spectrum at room temper-
atures ranging from 290 to 315 K Fig. 1B. The effective quadrupolar
coupling ðKÞ changes with temperature, since the order parameter
is a function of temperature. All the experiments have been carried
out here at temperature 307 K, which gives K ¼ 6856 Hz. The equi-
librium spectrum is obtained by applying a ðp=2Þy pulse, is shown
in Fig. 1B. The integrated intensities are in the expected ratio
7:12:15:16:15:12:7, as determined by the transition matrix ele-
ments of j ðIxðyÞÞijj

2 [39,40]. Fluctuation of order parameter (S) leads
to differential line broadening of the transitions, central transition
is independent of orientation (or quadrupoalr coupling term H1

Q )
hence retains narrow line width [39,40].

2. Non-adiabatic geometric phases and controlled phase shift
gates

Berry’s discovery of geometric phase accompanying cyclic adia-
batic evolution has triggered an immense effects in holonomy ef-
fects in quantum mechanics and has led to many generalizations
[41]. The adiabatic theorem states that if a quantum system with
a time-dependent non-degenerate Hamiltonian HðtÞ is initially in
nth instantaneous eigenstate of Hð0Þ, and if HðtÞ evolves slowly en-
ough, then the state of the system at time ‘t’ will remain in the nth
instantaneous eigenstate of HðtÞ [42]. Berry showed that, when a
quantum system is parallel transported adiabatically round a cir-
cuit by varying parameters in its Hamiltonian, then it acquires a
geometric phase factor in addition to the familiar dynamical phase
factor [41]. Simon explained that this geometric phase could be
viewed as a consequence of parallel transport in a curved space
appropriate to the quantum system [42]. Aharonov and Anandan
demonstrated that adiabatic condition can be lifted for cyclic evo-
lution, and the resulting phase is known as non-adiabatic geomet-
ric phase or Aharonov and Anandan phase [43].

In nuclear magnetic resonance, geometric phase was first veri-
fied by Suter et al. [44], in the adiabatic regime. A similar approach
was used by Jones, to implement controlled phase shift gates by
geometric phases in a two qubit system formed by a weak J-cou-
pling [45]. However the adiabatic condition is not satisfied in many
realistic cases because of the long operation time [46]. Hence it is
difficult to experimentally realize quantum computation with adi-
abatic evolutions, particularly for systems having short decoher-
ence time [46]. To overcome this disadvantage, it was proposed
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to use the non-adiabatic cyclic geometric phase to construct quan-
tum gates [46,47]. For a non-adiabatic cyclic evolution, the total
phase difference between the initial and final states, consists of
both geometric and dynamical phases [43,46]. Therefore, to obtain
only the non-adiabatic geometric phase, one has to remove the
dynamical component. Non-adiabatic geometric phase in NMR
was also first verified by Suter et al. [48]. Non-adiabatic geometric
phases in NMR, were used to implement controlled phase shift
gates, Deutsch–Jozsa (DJ) and Grover search algorithms in weakly
J-coupled and strongly dipolar coupled systems [49,50]. In the fol-
lowing we show that, non-adiabatic geometric phases can be ob-
tained by rotating a two level subspace, by means of transition
selective pulses [48–50].

A two level subspace ðr; sÞ forms a fictitious spin-1/2 subspace,
hence the states j ri and j si can be considered as basis states of a
spin-1/2 nucleus, and can be represented on a Bloch sphere
(Fig. 2) [39,48,50]. The ðr; sÞ subspace can be manipulated by apply-
ing a transition selective pulse on j ri� j si transition, the unitary
operator of this pulse in the ðr; sÞ subspace is same as that of a
pulse operator associated with spin-1/2 nucleus. In other words,
the unitary operator of a transition selective pulse (TSP) with angle
a and phase /, is given by

UTSP ¼ e�iaðIrs
x cosð/ÞþIrs

y sinð/ÞÞ ¼ cos a=2 �e�ið/�p=2Þ sin a=2
eði/�p=2Þ sin a=2 cos a=2

 !

ð3Þ

where Irs
x ¼ Ix and Irs

y ¼ Iy are the angular momentum operators of
the ðr; sÞ subspace. One can cyclically rotate the ðr; sÞ subspace by
applying two p pulses on transition ðr; sÞ, with phases ðhÞ and
ðhþ pþ /Þ (Fig. 2), the resultant unitary operator, in the ðr; sÞ sub-
space, is given by

u ¼ e�iaðIrs
x cosðhÞþIrs

y sinðhÞÞ � e�iaðIrs
x cosðhþpþ/ÞþIrs

y sinðhþpþ/ÞÞ

¼ 0 �e�iðh�p=2Þ

eðih�p=2Þ 0

 !
� 0 �e�iðhþ/þp=2Þ

eiðhþ/þp=2Þ 0

 !

¼ ei/ 0
0 e�i/

 ! ð4Þ

Let j ri and j si, respectively represent lower and upper states of
ðr; sÞ subspace, then the effect of u on ðr; sÞ subspace can be written as

u j ri ¼ u �
1
0

� �
¼ ei/ j ri

u j si ¼ u �
0
1

� �
¼ e�i/ j si

ð5Þ
r

s

(θ+π+φ)

(θ+π)

(θ+π/2)

θ

φ

φ

z

Fig. 2. A two level subspace ðr; sÞ is represented on a Bloch sphere. Two p pulses
applied on a transition ðr; sÞ with phases h and ðhþ pþ /Þ, cyclically rotates the
states j ri and j si. Solid angle subtended by this closed loop at the center of the
sphere is, 2/. The phase acquired by the states j ri and j si is ei/ and e�i/ ,
respectively.
Thus two p pulses applied on a transition (r,s), cyclically rotates
each of the two states, and introduces phase factors ei/ and e�i/

respectively for j ri and j si [48–50], where / is half of the solid an-
gle ðXÞ of the cyclic path at the center of the Bloch sphere (Fig. 2),
/ ¼ X=2. Thus the phase, known as geometric phase, acquired by
the states j ri and j si is given by eiX=2 and e�iX=2, respectively
[49,50], where the phase difference of eip between the states indi-
cate that the two states are traversed in the opposite directions
[48,49]:

u j ri ¼ eiX=2 j ri

u j si ¼ e�iX=2 j si
ð6Þ

It is possible to obtain various solid angles, hence various geo-
metric phases, by shifting the phases of the two p pulses with re-
spect to each other (Fig. 2) [49,50].

However the internal Hamiltonian evolves during the applica-
tion of the selective pulses, and gives rise to an additional phase
known as dynamical phase. In order to observe only the geometric
phase, one has to refocus the evolution of internal Hamiltonian. As
shown in Eq. (2), the Hamiltonian consists of a Larmor frequency
term and a quadrupolar coupling term. The Larmor frequency is
identical to the frequency of central transition ‘d’. The transmitter
and receiver frequencies are set at frequency of transition ‘d’
(Fig. 1A), hence there is no evolution in the rotating frame due to
the Larmor frequency term. Thus the evolution of internal Hamil-
tonian, during the pulse of duration tp is a diagonal matrix, given
by

UH ¼ e�iHQ tp ¼ diag½ei2pK21tp ; ei2pK3tp ; e�i2pK9tp ; e�i2pK15tp ; e�i2pK15tp ;

e�i2pK9tp ; ei2pK3tp ; ei2pK21tp � ð7Þ

From Eq. (7), it is evident that the quadrupolar evolution can be
refocused by choosing the value of tp as tp ¼ n=K, where ‘n’ is an
integer. The selective pulses and multi-frequency pulses used in
this work, are obtained by suitably phase modulating the on-reso-
nance Gaussian pulse with 5000 digitized points. The duration of
the pulse is chosen as 1.425 ms ð� 1=KÞ.

The phase information can be encoded in the coherences, hence
in order to observe the phases the initial state should contain the
coherences, which is obtained by applying a non-selective ðp=2Þy
pulse on equilibrium state. Fig. 3a shows the implementation of
controlled phase shift gate, represented by the diagonal matrix
Up
ð3;4Þ ¼ diag½1;1;�1;�1;1;1;1;1�, obtained by applying two selec-

tive p pulses on transition (3,4), with phases y and ðyþ pþ pÞ ¼ y.
The two states j 010i and j 011i acquire p phase shift so the tran-
sitions ‘b’ and ‘d’ are inverted, confirming the phase gate. since the
phases of two p pulses are same, it is possible to combine the two p
pulses in to a single 2p pulse. Such pulses are used in Section 3.1.
2e+04 0e+00 Hz

a b

2e+04 0e+00 Hz

Fig. 3. Implementation of controlled phase shift gates (a) Up
ð3;4Þ ¼ diag½1;1;�1;

�1;1;1;1;1� and (b) Up=2
1 ¼ diag½eip=2;1;1;1;1;1;1;1�, preceded by a hard ðp=2Þy

pulse. Up
ð3;4Þ is implemented by applying two ðpÞy pulses on transition c. Up=2

1 is
implemented by applying four multi-frequency p pulses (Eq. (10)).
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In some quantum computing protocols (for example Grover
search algorithm and quantum Fourier transform) one requires a
phase gate such as U/

k (Table 1), which creates the relative phase
ei/ at kth state, for example U/

8 ¼ ½1;1;1;1;1;1;1; ei/�. Such phase
gates can be implemented by sandwiching various phase gates
u/
ði;jÞ, as shown in Table 1. u/

ði;jÞ indicates the geometric phase shift
gate obtained by applying a pair of selective p pulses on a transi-
tion (i,j) with phases y and ðyþ pþ /Þ, thus the diagonal elements
corresponding to i and j states acquire a phase shift ei/ and e�i/

respectively. For example, u/=8
ð1;2Þ ¼ diag½ei/=8; e�i/=8;1;1;1;1;1;1�,

which can be obtained by applying two selective p pulse on transi-
tion (1,2) with phases y and ðyþ pþ /=8Þ.

The method of constructing controlled phase shift gates (Table
1), is explained here. For example, consider a system consisting
of N energy levels and ðN � 1Þ single quantum transitions between
the levels (1, 2), (2, 3), . . .ðN � 1;NÞ, as shown in Fig. 4. In this sys-
tem, the controlled phase shift gate U/

k ¼ diag½11;12; . . . ; ðei/Þk;
. . . ;1N�, can be implemented by sandwiching ðN � 1Þ phase shift
gates, as

U/
k ¼ u�/=N

ð1;2Þ u�2/=N
ð2;3Þ �————— � u�ðk�1Þ/=N

ðk�1;kÞ � uðN�kÞ�/=N
ðk;kþ1Þ

� uðN�ðkþ1ÞÞ�/=N
ðkþ1;kþ2Þ �—————— � u/=N

ðN�1;NÞ

¼ ðe�i/=NÞ � diag½11;12; . . . ; ðei/Þk; . . . ;1N�

ð8Þ

In Eq. (8) the overall (or) global phase factor e�i/=N , has no phys-
ical significance since global phase is not an NMR observable quan-
tity [39]. In NMR, each transition corresponding to a pair of eigen
Table 1
Unitary operators of controlled-/ phase shifted gates with an overall phase factor
e�i/=8

U/
k ðk ¼ 1;2; . . . ;8Þ

U/
1 ¼ diag½ei/;1;1;1;1;1;1;1� ¼ u7/=8

ð1;2Þ � u
3/=4
ð2;3Þ � u

5/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
2 ¼ diag½1; ei/;1;1;1;1;1;1� ¼ u�/=8

ð1;2Þ � u
3/=4
ð2;3Þ � u

5/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
3 ¼ diag½1;1; ei/;1;1;1;1;1� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

5/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
4 ¼ diag½1;1;1; ei/;1;1;1;1� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

�3/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
5 ¼ diag½1;1;1;1; ei/;1;1;1� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

�3/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
6 ¼ diag½1;1;1;1;1; ei/;1;1� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

�3/=8
ð3;4Þ � u

�/=4
ð4;5Þ � u

�5/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ

U/
7 ¼ diag½1;1;1;1;1;1; ei/;1� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

�3/=8
ð3;4Þ � u

�/=2
ð4;5Þ � u

�5/=8
ð5;6Þ � u

�6/=8
ð6;7Þ � u

/=8
ð7;8Þ

U/
8 ¼ diag½1;1;1;1;1;1;1; ei/� ¼ u�/=8

ð1;2Þ � u
�/=4
ð2;3Þ � u

�3/=8
ð3;4Þ � u

�/=2
ð4;5Þ � u

�5/=8
ð5;6Þ � u

�3/=4
ð6;7Þ � u

�7/=8
ð7;8Þ

N

N–1

4

3

2

1

Fig. 4. Schematic energy level diagram of an N-level system. The arrows represent
single quantum transitions.
states, reflects the phase difference between those states. If all
the states have a common phase factor then it will not be reflected
in the spectrum. Hence in NMR quantum computing, the unitary
operators which differ by an overall phase factor, are considered
to be identical [14].

In Eq. (8), by putting N = 8 one can obtain any of the U/
k shown

in Table 1. In Table 1, each of the operators, U/
k , requires seven pairs

of selective p pulses, where each pair of pulses will act on a single
transition. However the p pulses on unconnected transitions can be
applied simultaneously. Hence one can simultaneously implement
uð1;2Þ;uð3;4Þ;uð5;6Þ;uð7;8Þ by using a pair of multi-frequency (MF)
pulses, similarly uð2;3Þ;uð4;5Þ;uð6;7Þ can be implemented by using an-
other pair of multi-frequency pulses. For example U/

1 can be imple-
mented by using seven geometric phase shift gates (Table 1),
obtained by using two pairs of multi-frequency p pulses, as de-
scribed below:

U/
1 ¼ u7/=8

ð1;2Þ � u
3/=4
ð2;3Þ � u

5/=8
ð3;4Þ � u

/=2
ð4;5Þ � u

3/=8
ð5;6Þ � u

/=4
ð6;7Þ � u

/=8
ð7;8Þ ð9Þ

The unitary operators of phase shift gates correspond to diagonal
matrices which commute with each other, hence U/

1 of Eq. (9) can
be rewritten as

U/
1 ¼ u7/=8

ð1;2Þ

h i
� u5/=8

ð3;4Þ

h i
� u3/=8

ð5;6Þ

h i
� u/=8

ð7;8Þ

h in o
� u3/=4

ð2;3Þ

h i
� u/=2

ð4;5Þ

h i
� u/=4

ð6;7Þ

h in o
¼ ðpÞayðpÞ

a
yþpþ7/=8

h i
� ðpÞcyðpÞ

c
yþpþ5/=8

h i
� ðpÞeyðpÞ

e
yþpþ3/=8

h in
� ðpÞgyðpÞ

g
yþpþ/=8

h io
� ðpÞbyðpÞ

b
yþpþ3/=4

h i
� ðpÞdyðpÞ

d
yþpþ/=2

h i
� ðpÞfyðpÞ

f
yþpþ/=4

h in o
¼ ðpÞa;c;e;gy � ðpÞa;c;e;gðyþpþ7/=8Þ;ðyþpþ5/=8Þ;ðyþpþ3/=8Þ;ðyþpþ/=8Þ

h in o
� ðpÞb;d;fy � ðpÞb;d;fðyþpþ3/=4Þ;ðyþpþ/=2Þ;ðyþpþ/=4Þ

h in o
ð10Þ
The p pulses acting on unconnected transitions, a; c; e and g (Eq.
(10)), can be combined (added) in to a single pulse, since the oper-
ators of the subspaces corresponding to these transitions
Ið1;2ÞxðyÞ ; I

ð3;4Þ
xðyÞ ; I

ð5:6Þ
xðyÞ and Ið7;8ÞxðyÞ [39,50], commute with each other. Similarly

one can combine the ðpÞ pulses acting unconnected transitions b, d
and f (Eq. (10)). Fig. 3b shows the spectrum obtained by a ðp=2Þy
pulse followed by the implementation of U/

1 ð/ ¼ p=2Þ using four
MF-p pulses (Eq. (10)), the state j 000i hence the transition ‘a’ ac-
quires a p=2 phase shift, confirms Up=2

1 .

3. Collins version of DJ algorithm

An n-bit binary string (x) has 2n possible input states,
x ¼ ð000 � � � 0Þn, . . ., (111� � � 1)n. Consider a function ‘f’ which takes
‘n’ input bits and returns one output bit, that is f ðxÞ ¼ 0 or 1. Fur-
ther more, it is told that the function ‘f’ is either constant or bal-
anced; when ‘f’ is constant, f ðxÞ ¼ 0 or 1 for all the input states,
whereas if ‘f’is balanced then f ðxÞ ¼ 0 for half of the input states
and f ðxÞ ¼ 1 for the remaining half. Classically one has to evaluate
f ðxÞ for each of the input states separately. As soon as function re-
turns ‘0’ for some inputs and ‘1’ for other inputs, it is certainly a
balanced function. However, if the output is still the same after try-
ing 2n=2 different input states, the function ‘f’ might be still bal-
anced, even though most likely it is constant. Only when
ð2n=2þ 1Þ input states produce the same output, you can be sure
that ‘f’ is balanced. Thus in the worst case, one requires
ð2n=2þ 1Þ queries [6].

On the other hand, the Deutsch–Jozsa (DJ) algorithm can evalu-
ate the function, simultaneously for all 2n input states and thus it
requires only one query to determine the nature of the function
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[3,6,51]. The Cleve version of the DJ algorithm requires an extra qu-
bit, thus for an n-bit function one requires ðnþ 1Þ qubit system
with initial state, win ¼j 0102 � � �0ni j 1nþ1i. The algorithm consists
of four steps [6,51];(1) creation of superposition state of all the in-
put states by applying Hadamard gates on all the qubits, (2) imple-
mentation of the oracle, (3) converting the resultant state in to one
of the basis states with Hadamard gate on first n qubits [51], (4)
measurement of final state of first ‘n’ qubits. For constant function,
the final state of each of the n qubits is j 0i, whereas for balanced
function, atleast one of the ‘n’ qubits is in state j 1i. The first and
third steps require Hadamard gates, whereas the second step,
implementation of oracle, require controlled not gates. Collins ver-
sion of DJ algorithm is same as Cleave’s version, except that it uses
only ‘n’ input qubits for an n-bit function, and oracle requires con-
trolled phase shift gates [52].

In NMR the final state of this algorithm (both Cleave and Collins
version) corresponds to longitudinal magnetization (populations),
hence qubit selective ðp=2Þy pulses are required for the measure-
ment, these pulses cancel the ðp=2Þ�y pulses required for the sec-
ond set of Hadamard gates (step 3). It was showed that the
phase sensitive spectrum recorded immediately after the oracle
implementation, can distinguish constant and balanced functions
[11,31,35]. Thus the implementation of DJ algorithm on an NMR
QC, can be simplified to the following steps: (1) creation of super-
position state of all the input states, (2) implementation of the ora-
cle, (3) detection. In this approach, the final state corresponds to a
coherent superposition of all the basis states, and the phase sensi-
tive detection of single quantum coherences can reveal the nature
of the function that is encoded in the oracle operator.
Pseudo
Hadamard

gate

h

Controlled
phase shift

gate

U

Detection

0

0

0

Fig. 5. Quantum circuit for Collins version of DJ algorithm on a three qubit system.

2e+04 1e+0

2e+04 1e+0

a b

c

Fig. 6. (a) Population distribution of j 000i PPS obtained by applying an amplitude mod
equilibrium state. (b) Spectrum of j 000i PPS obtained by applying a non-selective 5� pu
applying a ðp=2Þy pulse on j 000i PPS. The intensities are in accordance with Eq. (13),
intensities are in the ratio 10:48:101:140:100:46:8, while the expected theoretical intens
superposition of basis states.
For a three qubit system there are 2 constant and 70 ðcN
N=2 ¼ c8

4Þ
balanced functions [52,53]. The quantum circuit of the Collins ver-
sion of the DJ algorithm is shown in Fig. 5. The algorithm starts
with a pure state (pseudo pure state in NMR) j 000i which is
converted to a superposition state of eight basis states
j 000i; j 001i; . . . ; j 111i, by applying a pseudo Hadamard gate
on all the three qubits. Thereafter a unitary operator U (oracle) is
applied, followed by detection. The unitary operators (U) of the
oracle, are eight dimensional diagonal matrices. For two constant
functions, U’s are given by

Uc1 ¼ I ðunit matrixÞ and
Uc2 ¼ diag½�1;�1;�1;�1;�1;�1;�1;�1� ¼ ð�1Þ � I

ð11Þ

For balanced functions, we define the unitary operator as
Uð1; k; l;mÞ, which means that each of the four diagonal
elements 1; k; l, and m are equal to eip or e�ip (=�1), whereas the
remaining four diagonal elements are 1. For example
Uð1;2;3;4Þ ¼ diag½�1;�1;�1;�1;1;1;1;1�. The unitary operators
of 35 balanced functions can be written as

Uð1; k; l;mÞ ¼ ½� j 1ih1 j � j kihk j � j lihl j � j mihm j� � I;
where k < l < m; k ¼ 2;3; . . . ;6; l P kþ 1; and m P lþ 1

ð12Þ
The unitary operators of the remaining 35 balanced functions
are identical to one of the operators of Eq. (12), up to an overall
phase factor eip [53]. Here we implement the unitary operators cor-
responding to 11 of the 35 balanced functions (Eq. (12)) and one
constant function ðUc1Þ.

3.1. Experimental implementation

3.1.1. Preparation of pseudo pure state (PPS) j 000i
A multi-frequency pulse with six harmonics with appropriate

amplitudes was applied. The six harmonics are the frequencies of
the six leftmost transitions b; c; . . . ; g of Fig. 1B. Under the influence
of this pulse, the populations of all the states except j 000i, start a
collective population transfer among them as a linear chain of cou-
2e+041e+044 0e+00 Hz

2e+041e+044 0e+00 Hz

ulated multi-frequency pulse (explained in text) on transitions b, c, d, e, f, and g at
lse with 32 scans. (c) Coherent superposition state (Eqs. (13) and (14)) obtained by
which is different from equilibrium intensities of Fig. 1. Experimental integrated
ities are in the ratio 7:42:105:140:105:42:7. The intensities here represent unequal



Table 2
Unitary operators of balanced functions (Eq. (12)) and corresponding pulse sequences,
consisting of 2p pulses, where all the pulses are applied with phase ‘y’

Uð1; k; l;mÞ Pulse sequence

U(1, 2, 3, 4) ð2pÞa;c

U (1, 2, 3, 7) ð2pÞa;c;eð2pÞd;f

U (1, 2, 4, 6) ð2pÞa;dð2pÞe

U (1, 2, 5, 6) ð2pÞa;e

U (1, 2, 6, 7) ð2pÞa;f

U (1, 3, 4, 5) ð2pÞa;dð2pÞb

U (1, 3, 4, 8) ð2pÞa;d;f ð2pÞb;e;g

U (1, 3, 5, 8) ð2pÞa;e;gð2pÞb;f

U (1, 3, 7, 8) ð2pÞa;gð2pÞb

U (1, 4, 5, 8) ð2pÞa;c;e;gð2pÞb;f

U (1, 4, 7, 8) ð2pÞa;c;gð2pÞb

U (1, 5, 7, 8) ð2pÞa;c;gð2pÞb;d

U (1, 2, 3, 5) ð2pÞa;c ð2pÞd

U (1, 2, 3, 8) ð2pÞa;c;e;gð2pÞd;f

U (1, 2, 4, 7) ð2pÞa;d;f ð2pÞe

U (1, 2, 5, 7) ð2pÞa;eð2pÞf

U (1, 2, 6, 8) ð2pÞa;f ð2pÞg

U (1, 3, 4, 6) ð2pÞa;dð2pÞb;e

U (1, 3, 5, 6) ð2pÞa;eð2pÞb

U (1, 3, 6, 7) ð2pÞa;f ð2pÞb

U (1, 4, 5, 6) ð2pÞa;c;eð2pÞb

U (1, 4, 6, 7) ð2pÞa;c;f ð2pÞb

U (1, 5, 6, 7) ð2pÞa;c;f ð2pÞb;d

U (1, 6, 7, 8) ð2pÞa;c;e;gð2pÞb;d

U (1, 2, 3, 6) ð2pÞa;c;eð2pÞd

U (1, 2, 4, 5) ð2pÞa;d

U (1, 2, 4, 8) ð2pÞa;d;f ð2pÞe;g

U (1, 2, 5, 8) ð2pÞa;e;gð2pÞf

U (1, 2, 7, 8) ð2pÞa;g

U (1, 3, 4, 7) ð2pÞa;d;f ð2pÞb;e

U (1, 3, 5, 7) ð2pÞa;eð2pÞb;f

U (1, 3, 6, 8) ð2pÞa;f ð2pÞb;g

U (1, 4, 5, 7) ð2pÞa;c;eð2pÞb;f

U (1, 4, 6, 8) ð2pÞa;c;f ð2pÞb;g

U (1, 5, 6, 8) ð2pÞa;c;f ð2pÞb;d;g
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pled oscillators [8,14,27]. Choosing the correct amplitudes of vari-
ous harmonics and duration of the pulse, these six transitions can
be simultaneously saturated with average population of these se-
ven levels. The relative amplitudes of the six harmonics b, c, . . .,
and g are respectively given by 0.84, 0.93, 1, 1.03, 1.04 and 1.07
[35]. The duration of the pulse is 2.05 ms. A gradient pulse was ap-
plied subsequently to kill (dephase) the coherences created during
the process. The final populations were measured using a non-
selective small-angle (5�) pulse. The small-angle pulse, converts
the population differences between adjacent energy levels into sin-
gle quantum transitions, within linear approximation. The spec-
trum of Fig. 6b confirms the preparation of j 000i pseudopure
state.

3.1.2. Coherent superposition
After the creation of j 000i PPS, a pseudo Hadamard gate (h)

has to be applied for creating a superposition of 8 basis states.
In weakly coupled spins-1/2 nuclei, ‘h’ is implemented by a hard
ðp=2Þy pulse which creates an equal superposition. In the present
case the hard ðp=2Þy pulse creates an unequal superposition state,
since the coefficients of various eigenstates are different. In other
words, the unitary operator of a hard ðp=2Þy is not same as that of
a weekly coupled three qubit system. However, as is shown here,
the created coherent superposition can be utilized for quantum
parallelism, to distinguish different classes of functions. The state
of the system after a ðp=2Þy pulse on j 000i PPS, is given by

j wi ¼ ðe�ip2Iy Þ� j 000i ¼ 1
8
ffiffiffi
2
p ½j 000i þ

ffiffiffi
7
p
j 001i þ

ffiffiffiffiffiffi
21
p

j 010i

þ
ffiffiffiffiffiffi
35
p

j 011i þ
ffiffiffiffiffiffi
35
p

j 100i þ
ffiffiffiffiffiffi
21
p

j 101i þ
ffiffiffi
7
p
j 110i

þ j 111i� ¼ 1
8
ffiffiffi
2
p ½j 1i þ

ffiffiffi
7
p
j 2i þ

ffiffiffiffiffiffi
21
p

j 3i þ
ffiffiffiffiffiffi
35
p

j 4i

þ
ffiffiffiffiffiffi
35
p

j 5i þ
ffiffiffiffiffiffi
21
p

j 6i þ
ffiffiffi
7
p
j 7iþ j 8i� ð13Þ

The corresponding density matrix can be written as
(14)
where the elements within the boxes represent single quantum
transitions a, b, . . ., g. Fig. 6c shows the spectrum of j wi, where
the intensities of transitions are obtained by modulus of the product
of single quantum elements of Eq. (14), with corresponding matrix
elements of Ix. The intensities in Fig. 6c are different from equilib-
rium intensities, and represent the coherent superposition of the
basis states.

3.1.3. Implementation of U
For constant function U ¼ Uc1 ¼ I (unit matrix), which requires

no pulse, thus the final state wc1 is given by

j wc1i ¼ Uc1 j wi ¼j wi ð15Þ

As mentioned in Section 2, the controlled phase shift gate Up
ði;jÞ can

be achieved by applying two ðpÞ pulses with same phase on transi-
tion ði; jÞ, which can be combined in to a single ð2pÞ pulse. For bal-
ance functions, U ¼ Uð1; k; l;mÞ (Eq. (12)), can be decomposed in to
Uð1; k; l;mÞ ¼ up
ð1;kÞ � up

ðl;mÞ

¼ ½up
ð1;2Þ � � �up

ðk�1;kÞ�½up
ðl;lþ1Þ � up

ðlþ1;lþ2Þ � � �up
ðm�1;mÞ� ð16Þ

In Eq. (16), up
ð1;kÞ and up

ðl;mÞ are implemented by applying two
ð2pÞy pulses on transitions (1,k) and (l,m) respectively, if (1,k)
and (l,m) does not correspond to single quantum transitions, then
they can be decomposed in to a series of single quantum transi-
tions, as shown in the second equality of Eq. (16), for example

Uð1;2;3;4Þ ¼ up
ð1;2Þ � up

ð3;4Þ ¼ ð2pÞa � ð2pÞc

Uð1;4;5;8Þ ¼ up
ð1;4Þ � up

ð5;8Þ ¼ ½up
ð1;2Þ:u

p
ð2;3Þ � up

ð3;4Þ�:½up
ð5;6Þ � up

ð6;7Þ � up
ð7;8Þ�

¼ ½ð2pÞa � ð2pÞb � ð2pÞc� � ½ð2pÞe � ð2pÞf � ð2pÞg �
¼ ð2pÞa;c;e;g � ð2pÞb;f

ð17Þ
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where in the last equality of Eq. (17), the pulses acting on uncon-
nected transitions (Fig. 1) are combined in to a single MF pulse.
The required pulses for various Uð1; k; l;mÞ of Eq. (12) are given in
Table 2, the 2p pulses acting on unconnected transitions, are com-
bined in to a single multi-frequency (MF) 2p pulse. The duration
of each transition selective pulse, is set such that the evolution
due to quadrupolar coupling, makes a complete 2p rotation. It is
to be noted that, in Eq. (17) and Table 2, one can use any phase
for ð2pÞ pulses, we have used ‘y’ phase for all the pulses. The final
state j w1;k;l;mi is given by

j w1;k;l;mi ¼ Uð1; k; l;mÞ j wi ð18Þ

It can be seen that j w1;k;l;mi is same as j wi, except that the basis
states j 1i, j ki; j li and j mi acquire a phase factor eip (=�1)

3.1.4. Detection
The single quantum transitions (a, b, g) of the final states (Eq.

(15),(18)) are detected. Fig. 7 shows the spectrum of j wc1i and var-
ious j w1;k;l;mi. From the shape of the spectrum one can conclude,
ψ
C1

ψ
1236

ψ
1237

ψ
1245

ψ
1246

ψ
1248

ψ
1256

ψ
1234

2e+04 0e+00 Hz 2e+04 0e+0

Fig. 7. Implementation of Collins version of 3-qubit DJ algorithm (Fig. 5). Spectrum of w
correspond to balanced functions Uð1; k; l;mÞ (Eq. (12)). The required MF pulses for imple
Each spectrum is recorded in 4 scans.
whether the final state represents a constant (or) a balanced func-
tion. For constant function ðj wc1iÞ none of the peaks are inverted,
whereas for balanced functions ðj w1klmiÞ atleast one of the peaks
is inverted. Furthermore the phases of transitions confirm the final
state j w1;k;l;mi. For example in the spectrum of j w1;2;3;4i, transition d
is negative since the phase difference between the states j 4i and
j 5i is eip, while all others have zero phase difference, similarly
one can confirm the other states.

It is to be noted that, though the final state (Eq. (18)) contains
single and multiple quantum coherences, the nature of the func-
tion encoded in the unitary operator (U) of the oracle, is deter-
mined by phase sensitive spectra of single quantum coherences.
Thus for implementing DJ algorithm in NMR QC, it is sufficient to
have the initial state containing only single quantum coherences,
which can be obtained by applying a ðp=2Þ pulse on an equilibrium
state [54]. Infact, it has been shown that, the thermal initial states
are sufficient to implement some algorithms of interest [55–57].
However the implementation of DJ algorithm using coherent
superposition state, demonstrate the coherent control of a
ψ
1235

ψ
1238

ψ
1247

ψ1257

0 Hz 2e+04 0e+00 Hz

c1 which corresponds to a constant function U = I. Spectra of w1;k;l;m (Eq. (18)) which
menting Uð1; k; l;mÞ are given in Table 2. The duration of each MF pulse is 1.425 ms.
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superposition state, which will be helpful in extending the use of
these systems for other quantum algorithms.

4. Conclusions

Demonstration of quantum computing protocols on various
NMR systems, is a promising research area for increasing number
of qubits. In this work controlled phase shift gates are imple-
mented on a oriented spin-7/2 nucleus, using non-adiabatic geo-
metric phases obtained by using selective pulses on single
quantum transitions. It is also demonstrated here that in an N level
system, one can implement a controlled phase shift gate by sand-
wiching various geometric phase shift gates, this method can also
be applied to weakly as well as strongly coupled spin-1/2 systems.
The number of selective pulses are reduced by using multi-fre-
quency (MF) pulses. Collins version of 3-qubit DJ algorithm is
implemented, where the eight basis states are collectively treated
as a three qubit system. The required controlled phase shift gates
of the algorithm, are implemented by using MF-ð2pÞ pulses.
Though it is difficult to scale the quadrupolar systems for higher
number of qubits, the implementation of QIP on these systems, will
be helpful in extending their applicability in larger spin networks
where quadrupolar nuclei are coupled to spin-1/2 nuclei.
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